The microbial community associated with Parascaris spp. infecting juvenile horses - Parasites & Vectors - Parasites & Vectors

  • Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006;367:1521–32.

    Article  PubMed  Google Scholar 

  • Chelladurai JJ, Bader C, Snobl T, Magstadt D, Cooper V, Brewer MT. Toxocara vitulorum infection in a cohort of beef calves in Iowa. Vet Parasitol. 2015;214:96–9.

    Article  PubMed  Google Scholar 

  • Avery RH, Wall LA, Verhoeve VI, Gipson KS, Malone JB. Molecular confirmation of Ascaris suum: further investigation into the zoonotic origin of infection in an 8-year-old boy with Loeffler syndrome. Vector Borne Zoonotic Dis. 2018;18:638–40.

    Article  PubMed  Google Scholar 

  • Sharma N, Hunt PW, Hine BC, Ruhnke I. The impacts of Ascaridia galli on performance, health, and immune responses of laying hens: new insights into an old problem. Poul Sci. 2019;98:6517–26.

    Article  Google Scholar 

  • Gakosso LGC, Baadi F, Abakka FZ, Basraoui D. The visceral larva migrans caused by Toxocara canis: a case report. Pan Afr Med J. 2020;36:150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinemeyer CR. Diagnosis and control of anthelmintic-resistant Parascaris equorum. Parasit Vectors. 2009;2:S8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen MK. Evidence-based considerations for control of Parascaris spp. infections in horses. Equine Vet Ed. 2016;28:224–31.

    Article  Google Scholar 

  • Nicholls JM, Clayton HM, Pirie HM, Duncan JL. A pathological study of the lungs of foals infected experimentally with Parascaris equorum. J Comp Pathol. 1978;88:261–74.

    Article  CAS  PubMed  Google Scholar 

  • Brown PJ, Clayton HM. Hepatic pathology of experimental Parascaris equorum infection in worm-free foals. J Comp Path. 1979;89:115–23.

    Article  CAS  PubMed  Google Scholar 

  • Southwood LL, Ragle CA, Snyder S, Hendrickson DA. Surgical treatment of ascarid impactions in horses and foals. Proc Am Assoc Equine Practnrs. 1996;42:258–61.

    Google Scholar 

  • Cribb NC, Cote NM, Boure LP, Peregrine AS. Acute small intestinal obstruction associated with Parascaris equorum infection in young horses: 25 cases (1985–2004). N Z Vet J. 2006;54:338–43.

    Article  CAS  PubMed  Google Scholar 

  • Tatz AJ, Segev G, Steinman A, Berlin D, Milgram J, Kelmer G. Surgical treatment for acute small intestinal obstruction caused by Parascaris equorum infection in 15 horses (2002–2011). Equine Vet J Suppl. 2012;43:111–4.

    Article  Google Scholar 

  • Alanazi AD, Mukbel RM, Alyousif MS, AlShehri ZS, Alanazi IO, Al-Mohammed HI. A field study on the anthelmintic resistance of Parascaris spp. in Arab foals in the Riyadh region Saudi Arabia. Vet Q. 2017;37:200–5.

    Article  PubMed  Google Scholar 

  • Cirak VY, Kar S, Girişgin O. A survey on anthelmintic resistance in Strongyles to ivermectin and pyrantel and macrocyclic lactone-resistance in Parascaris equorum. Turkiye Paraziol Derg. 2010;34:35–9.

    Google Scholar 

  • Schougaard H, Nielsen MK. Apparent ivermectin resistance of Parascaris equorum in Danish foals. Vet Rec. 2007;160:439–40.

    Article  CAS  PubMed  Google Scholar 

  • Lassen B, Peltola SM. Anthelmintic resistance of intestinal nematodes to ivermectin and pyrantel in Estonian horses. J Helminthol. 2014;89:760–3.

    Article  PubMed  Google Scholar 

  • Näreaho A, Vainio K, Oksanen A. Impaired efficacy of ivermectin against Parascaris equorum, and both ivermectin and pyrantel against strongyle infections in trotter foals in Finland. Vet Parasitol. 2011;182:372–7.

    Article  PubMed  Google Scholar 

  • Laugier C, Sevin C, Ménard S, Maillard K. Prevalence of Parascaris equorum infection in foals on French stud farms and first report of ivermectin-resistant P. equorum populations in France. Vet Parasitol. 2012;188:185–9.

    Article  PubMed  Google Scholar 

  • Geurden T, Betsch JM, Maillard K, Vanimisetti B, D'Espois M, et al. Determination of anthelmintic efficacy against equine cyathostomins and Parascaris equorum in France. Equine Vet Ed. 2013;25:304–7.

    Article  Google Scholar 

  • von Samson-Himmelstjerna G, Fritzen B, Demeler J, Schurmann S, Rohn K, Schnieder T, et al. Cases of reduced cyathostomin egg-reappearance period and failure of Parascaris equorum egg count reduction following ivermectin treatment as well as survey on pyrantel efficacy on German horse farms. Vet Parasitol. 2007;144:74–80.

    Article  Google Scholar 

  • Martin F, Halvarsson P, Delhomme N, Höglund J, Tydén E. Exploring the β-tubulin gene family in a benzimidazole-resistant Parascaris univalens population. Int J Parasitol Drugs Drug Resist. 2021;17:84–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veronesi F, Moretta I, Moretti A, Fioretti DP, Genchi C. Field effectiveness of pyrantel and failure of Parascaris equorum egg count reduction following ivermectin treatment in Italian horse farms. Vet Parasitol. 2009;161:138–41.

    Article  CAS  PubMed  Google Scholar 

  • Veronesi F, Fioretti DP, Genchi C. Are macrocyclic lactones useful drugs for the treatment of Parascaris equorum infections in foals? Vet Parasitol. 2010;172:164–7.

    Article  CAS  PubMed  Google Scholar 

  • Lindgren K, Ljungvall Ö, Nilsson O, Ljungström BL, Lindahl C, et al. Parascaris equorum in foals and in their environment on a Swedish stud farm, with notes on treatment failure of ivermectin. Vet Parasitol. 2008;151:337–43.

    Article  CAS  PubMed  Google Scholar 

  • Lind EO, Christensson D. Anthelmintic efficacy on Parascaris equorum in foals on Swedish studs. Acta Vet Scand. 2009;51:45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boersema JH, Eysker M, Nas JWM. Apparent resistance of Parascaris equorum to macrocylic lactones. Vet Rec. 2002;150:279–81.

    Article  CAS  PubMed  Google Scholar 

  • Stoneham S, Coles G. Ivermectin resistance in Parascaris equorum. Vet Rec. 2006;158:572.

    Article  PubMed  Google Scholar 

  • Relf VE, Lester HE, Morgan ER, Hodgkinson JE, Matthews JB. Anthelmintic efficacy on UK thoroughbred stud farms. Int J Parasitol. 2014;44:507–14.

    Article  PubMed  Google Scholar 

  • Hearn FPD, Peregrine AS. Identification of foals infected with Parascaris equorum apparently resistant to ivermectin. J Am Vet Med Assoc. 2003;223:482–5.

    Article  PubMed  Google Scholar 

  • Slocombe JOD, de Gannes RVG, Lake MC. Macrocyclic lactone resistant Parascaris equorum on stud farms in Canada and effectiveness of fenbendazole and pyrantel pamoate. Vet Parasitol. 2007;145:371–6.

    Article  CAS  PubMed  Google Scholar 

  • Craig TM, Diamond PL, Ferwerda NS, Thompson JA. Evidence of ivermectin resistance by Parascaris equorum on a Texas horse farm. J Equine Vet Sci. 2007;27:67–71.

    Article  Google Scholar 

  • Lyons ET, Tolliver SC, Ionita M, Collins SS. Evaluation of parasiticidal activity of fenbendazole, ivermectin, oxibendazole, and pyrantel pamoate in horse foals with emphasis on ascarids (Parascaris equorum) in field studies on five farms in Central Kentucky in 2007. Parasitol Res. 2008;103:287–91.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong SK, Woodgate RG, Gough S, Heller J, Sangster NC, et al. The efficacy of ivermectin, pyrantel and fenbendazole against Parascaris equorum infection in foals on farms in Australia. Vet Parasitol. 2014;205:575–80.

    Article  CAS  PubMed  Google Scholar 

  • Beasley A, Coleman G, Kotze AC. Suspected ivermectin resistance in a south-east Queensland Parascaris equorum population. Aust Vet J. 2015;93:305–7.

    Article  CAS  PubMed  Google Scholar 

  • Wilkes EJA, McConaghy FF, Thompson RL, Dawson K, Sangster NC, Hughes KJ. Efficacy of a morantel-abamectin combination for the treatment of resistant ascarids in foals. Aust Vet J. 2017;95:85–8.

    Article  CAS  PubMed  Google Scholar 

  • Bishop RM, Scott I, Gee EK, Rogers CW, Pomroy WE, Mayhew IG. Sub-optimal efficacy of ivermectin against Parascaris equorum in foals on three Thoroughbred stud farms in the Manawatu region of New Zealand. N Z Vet J. 2014;62:91–5.

    Article  CAS  PubMed  Google Scholar 

  • Cooper LG, Caffe G, Cerutti J, Nielsen MK, Anziani OS. Reduced efficacy of ivermectin and moxidectin against Parascaris spp. in foals from Argentina. Vet Parasitol Reg Stud Rep. 2020;20:100388.

    Google Scholar 

  • Molento MB, Antunes J, Bentes RN, Coles GC. Anthelmintic resistant nematodes in Brazilian horses. Vet Rec. 2008;162:384–5.

    Article  CAS  PubMed  Google Scholar 

  • Hautala K, Näreaho A, Kauppinen O, Nielsen MK, Sukura A, Rajala-Schultz PJ. Risk factors for equine intestinal parasite infections and reduced efficacy of pyrantel embonate against Parascaris sp. Vet Parasitol. 2019;273:52–9.

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Höglund J, Bergström TF, Lindsjö OK, Tydén E. Resistance to pyrantel embonate and efficacy of fenbendazole in Parascaris univalens on Swedish stud farms. Vet Parasitol. 2018;264:69–73.

    Article  CAS  PubMed  Google Scholar 

  • Lyons ET, Tolliver SC, Kuzmina TA, Collins SS. Further evaluation in field tests of the activity of three anthelmintics (fenbendazole, oxibendazole, and pyrantel pamoate) against the ascarid Parascaris equorum in horse foals on eight farms in Central Kentucky (2009–2010). Parasitol Res. 2011;109:1193–7.

    Article  PubMed  Google Scholar 

  • Martin F, Eyda M, Höglund J, Tydén E. Constitutive and differential expression of transport protein genes in Parascaris univalens larvae and adult tissues after in vitro exposure to anthelmintic drugs. Vet Parasitol. 2021;298:109535.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IA, Leathwick DM. Anthelmintic resistance in nematode parasites of cattle: a global issue? Trends Parasitol. 2011;27:176–81.

    Article  PubMed  Google Scholar 

  • Kaplan RM, Vidyashankar AN. An inconvenient truth: Global worming and anthelmintic resistance. Vet Parasitol. 2012;186:70–8.

    Article  PubMed  Google Scholar 

  • Jimenez Castro PD, Venkatesan A, Redman E, Chen R, Malatesta A, Huff H, et al. Multiple drug resistance in hookworms infecting greyhound dogs in the USA. Int J Parasitol Drugs Drug Resist. 2021;17:107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Samson-Himmelstjerna G, Thompson RCA, Krücken J, Grant W, Bowman DD, Schnyder M, et al. Spread of anthelmintic resistance in intestinal helminths of dogs and cats is currently less pronounced than in ruminants and horses - Yet it is of major concern. Int J Parasitol Drugs Drug Resist. 2021;17:36–45.

    Article  Google Scholar 

  • Geerts S, Coles GC, Gryseels B. Anthelmintic resistance in human helminths: Learning from the problems with worm control in livestock. Parasitol Today. 1997;13:149–51.

    Article  CAS  PubMed  Google Scholar 

  • Beech RN, Skuce P, Bartley DJ, Martin RJ, Prichard RK, Gilleard JS. Anthelmintic resistance: markers for resistance, or susceptibility? Parasitology. 2010;138:160–74.

    Article  PubMed  Google Scholar 

  • Vercruysse J, Albonico M, Behnke JM, Kotze AC, Prichard RK, McCarthy JS, et al. Is anthelmintic resistance a concern for the control of human soil-transmitted helminths? Int J Parasitol Drugs Drug Resist. 2011;1:14–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tinkler SH. Preventive chemotherapy and anthelmintic resistance of soil-transmitted helminths—Can we learn nothing from veterinary medicine? One Health. 2020;9:100106.

    Article  PubMed  Google Scholar 

  • Ni J, Shen TCD, Chen EZ, Bittinger K, Bailey A, Roggiani M, et al. A role for bacterial urease in gut dysbiosis and Crohn's disease. Sci Transl Med. 2017;9:6888.

    Article  Google Scholar 

  • Helmink BA, Wadud Khan MA, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25:377–88.

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol Psychiatry. 2016;21:786–96.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy R, Lappin DF, Dixon PM, Buijs MJ, Zaura E, Crielaard W, et al. The microbiome associated with equine periodontitis and oral health. Vet Res. 2016;47:49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima SF, Teixeira AGV, Higgins CH, Lima FS, Bicalho RC. The upper respiratory tract microbiome and its potential role in bovine respiratory disease and otitis media. Sci Rep. 2016;6:29050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemmons BA, Voy BH, Myer PR. Altering the Gut Microbiome of Cattle: considerations of host-microbiome interactions for persistent microbiome manipulation. Microb Ecol. 2019;77:523–36.

    Article  CAS  PubMed  Google Scholar 

  • Song SJ, Woodhams DC, Martino C, Allaband C, Mu A, Javorschi-Miller-Montgomery S, et al. Engineering the microbiome for animal health and conservation. Exp Biol Med. 2019;244:494–504.

    Article  Google Scholar 

  • Peixoto RS, Harkins DM, Nelson KE. Advances in microbiome research for animal health. Annu Rev Anim Biosci. 2021;9:289–311.

    Article  CAS  PubMed  Google Scholar 

  • Rosado PM, Leite DCA, Duarte GAS, Chaloub RM, Jospin G, Nunes da Rocha U, et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 2019;13:921–36.

    Article  CAS  PubMed  Google Scholar 

  • Santoro EP, Borges RM, Espinoza JL, Freire M, Messias CSMA, Villela HDM, et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci Adv. 2021;7:3088.

    Article  Google Scholar 

  • Correa-García S, Pande P, Séguin A, St-Arnaud M, Yergeau E. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol. 2018;11:819–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng X, Zhang N, Shen Z, Zhu C, Liu H, Xu Z, et al. Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum. NPJ Biofilms Microbiomes. 2021;7:33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoerauf A, Volkmann L, Nissen-Paehle K, Schmetz C, Autenrieth I, Büttner DW, et al. Targeting of Wolbachia endobacteria in Litomosoides sigmodontis: comparison of tetracyclines with chloramphenicol, macrolides and ciprofloxacin. Top Med Int Health. 2000;5:275–9.

    Article  CAS  Google Scholar 

  • Casiraghi M, McCall JW, Simoncini K, Kramer LH, Sacchi L, Genchi C, et al. Tetracycline treatment and sex-ratio distortion: a role for Wolbachia in the moulting of filarial nematodes? Int J Parasitol. 2002;32:1457–68.

    Article  CAS  PubMed  Google Scholar 

  • Arumugam S, Pfarr KM, Hoerauf A. Infection of the intermediate mite host with Wolbachia-depleted Litomosoides sigmodontis microfilariae: impaired L1 to L3 development and subsequent sex-ratio distortion in adult worms. Int J Parasitol. 2008;38:981–7.

    Article  PubMed  Google Scholar 

  • Mand S, Pfarr K, Sahoo PK, Satapathy AK, Specht S, Klarmann U, et al. Macrofilaricidal activity and amelioration of lymphatic pathology in bancroftian filariasis after 3 weeks of doxycycline followed by single-dose diethcarbamazine. Am J Trop Med Hyg. 2009;81:702–11.

    Article  CAS  PubMed  Google Scholar 

  • Hoerauf A, Mand S, Volkmann L, Büttner M, Marfo-Debrekyei Y, Taylor M, et al. Doxycycline in the treatment of human onchocerciasis: kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms. Microbes Infect. 2003;5:261–73.

    Article  CAS  PubMed  Google Scholar 

  • Foray V, Pérez-Jiménez MM, Fattouh N, Landmann F. Wolbachia control stem cell behavior and stimulate germline proliferation in filarial nematodes. Dev Cell. 2018;45:198–211.

    Article  CAS  PubMed  Google Scholar 

  • Bazzocchi C, Mortarino M, Grandi G, Kramer LH, Genchi C, Bandi C, et al. Combined ivermectin and doxycycline treatment has microfilaricidal and adulticidal activity against Dirofilaria immitis in experimentally infected dogs. Int J Parasitol. 2008;38:1401–10.

    Article  CAS  PubMed  Google Scholar 

  • Luck AN, Evans CC, Riggs MD, Foster JM, Moorhead AR, Slatko BE, et al. Concurrent transcriptional profiling of Dirofilaria immitis and its Wolbachia endosymbiont throughout the nematode life cycle reveals coordinated gene expression. BMC Genomics. 2014;15:1041.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor MJ, von Geldern TW, Ford L, Hübner MP, Marsh K, Johnston KL, et al. Preclinical development of an oral anti-Wolbachia macrolide drug for the treatment of lymphatic filariasis and ochocerciasis. Sci Transl Med. 2019;11:2086.

    Article  Google Scholar 

  • Hong WD, Benayoud F, Nixon GL, Ford L, Johnston KL, Clare RH, et al. AWZ1066S, a highly specific anti-Wolbachia drug candidate for a short-course treatment of filariasis. Proc Natl Acad Sci USA. 2019;116:1414–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Ashram S, Suo X. Exploring the microbial community (microflora) associated with ovine Haemonchus contortus (macroflora) field strains. Sci Rep. 2017;7:70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinnathamby G, Henderson G, Umair S, Janssen P, Bland R, Simpson H. The bacterial community associated with the sheep gastrointestinal nematode parasite Haemonchus contortus. PLoS ONE. 2018;13:e0192164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mafuna T, Soma P, Tsotetsi-Khambule AM, Hefer CA, Muchadeyi FC, Thekisoe OMM, et al. Bacterial profiling of Haemonchus contortus gut microbiome infecting Dohne Merino sheep in South Africa. Sci Rep. 2021;11:5905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchet C, Deng Q, Umair S. Bacteria associated with the parasitic nematode Haemonchus contortus and its control using antibiotics. Parasitologia. 2022;2:63–70.

    Article  Google Scholar 

  • García-Sánchez AM, Miller AZ, Caldeira AT, Cutillas C. Bacterial communities from Trichuris spp. A contribution to deciphering the role of parasitic nematodes as vector of pathogens. Acta Trop. 2022;226:106277.

    Article  PubMed  Google Scholar 

  • White EC, Houlden A, Bancroft AJ, Hayes KS, Goldrick M, Grencis RK, et al. Manipulation of host and parasite microbiota: Survival strategies during chronic nematode infection. Sci Adv. 2018;4:7399.

    Article  Google Scholar 

  • Hahn M, Piecyk A, Jorge F, Cerrato R, Kalbe M, Dheilly NM. Host phenotype and microbiome vary with infection status, parasite genotype, and parasite microbiome composition. Mol Ecol. 2022;31:1577–94.

    Article  CAS  PubMed  Google Scholar 

  • Jorge F, Dheilly NM, Poulin R. Persistence of a core microbiome through the ontogeny of a multi-host parasite. Front Microbiol. 2020;11:954.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jorge F, Dheilly NM, Froissard C, Wainwright E, Poulin R. Consistency of bacterial communities in a parasitic worm: variation throughout the life cycle and across geographic space. Microb Ecol. 2022;83:724–38.

    Article  PubMed  Google Scholar 

  • Xiang Y, Wu XQ, Zhou AD. Bacterial diversity and community structure in the pine wood nematode Buesaphelenchus xylophilus and B mucronatus with different virulence by high-throughput sequencing of the 16S rDNA. PLoS ONE. 2015;10:0137386.

    Article  Google Scholar 

  • Wu XQ, Xue Q, Xiang Y, Ding XL, Xu XL, Ye JR. Community and functional diversity of bacteria associated with propagative and dispersal forms of Bursaphelenchus xylophilus. Nematology. 2016;18:1185–98.

    Article  Google Scholar 

  • Tian XJ, Wu XQ, Xiang Y, Fang X, Ye JR. The effect of endobacteria on the development and virulence of the pine wood nematode Brusaphelenchus xylophilus. Nematology. 2015;17:581–9.

    Article  Google Scholar 

  • Cheng XY, Tian XL, Wang YS, Lin RM, Mao ZC, Chen N, et al. Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation. Sci Rep. 2013;3:1869.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Yu Y, Ge J, Xie B, Zhu S, Cheng X. Effects of α-pinene on the pinewood nematode (Bursaphelenchus xylophilus) and its symbiotic bacteria. PLoS ONE. 2019;14:e0221099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandekerckhove TTM, Willems A, Gillis M, Cooman A. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae). Int J Syst Evol Microbiol. 2000;50:2197–205.

    Article  PubMed  Google Scholar 

  • Haegeman A, Vanholme B, Jacob J, Vandekerckhove TTM, Claeys M, Borgonie G, et al. An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup. Int J Parasitol. 2009;39:1045–54.

    Article  PubMed  Google Scholar 

  • Noel GR, Atibalentja N. 'Candidatus Paenicardinium endonii', an endosymbiont of the plant-parasitic nematode Heterdera gylcines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes. Int J Syst Evol Microbiol. 2006;56:1697–702.

    Article  CAS  PubMed  Google Scholar 

  • Bird DM, Opperman CH, Davies KG. Interactions between bacteria and plant-parasitic nematodes: now and then. Int J Parasitol. 2003;33:1269–76.

    Article  CAS  PubMed  ...

  • Comments

    Popular posts from this blog