The microbial community associated with Parascaris spp. infecting juvenile horses - Parasites & Vectors - Parasites & Vectors
Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet. 2006;367:1521–32.
Chelladurai JJ, Bader C, Snobl T, Magstadt D, Cooper V, Brewer MT. Toxocara vitulorum infection in a cohort of beef calves in Iowa. Vet Parasitol. 2015;214:96–9.
Avery RH, Wall LA, Verhoeve VI, Gipson KS, Malone JB. Molecular confirmation of Ascaris suum: further investigation into the zoonotic origin of infection in an 8-year-old boy with Loeffler syndrome. Vector Borne Zoonotic Dis. 2018;18:638–40.
Sharma N, Hunt PW, Hine BC, Ruhnke I. The impacts of Ascaridia galli on performance, health, and immune responses of laying hens: new insights into an old problem. Poul Sci. 2019;98:6517–26.
Gakosso LGC, Baadi F, Abakka FZ, Basraoui D. The visceral larva migrans caused by Toxocara canis: a case report. Pan Afr Med J. 2020;36:150.
Reinemeyer CR. Diagnosis and control of anthelmintic-resistant Parascaris equorum. Parasit Vectors. 2009;2:S8.
Nielsen MK. Evidence-based considerations for control of Parascaris spp. infections in horses. Equine Vet Ed. 2016;28:224–31.
Nicholls JM, Clayton HM, Pirie HM, Duncan JL. A pathological study of the lungs of foals infected experimentally with Parascaris equorum. J Comp Pathol. 1978;88:261–74.
Brown PJ, Clayton HM. Hepatic pathology of experimental Parascaris equorum infection in worm-free foals. J Comp Path. 1979;89:115–23.
Southwood LL, Ragle CA, Snyder S, Hendrickson DA. Surgical treatment of ascarid impactions in horses and foals. Proc Am Assoc Equine Practnrs. 1996;42:258–61.
Cribb NC, Cote NM, Boure LP, Peregrine AS. Acute small intestinal obstruction associated with Parascaris equorum infection in young horses: 25 cases (1985–2004). N Z Vet J. 2006;54:338–43.
Tatz AJ, Segev G, Steinman A, Berlin D, Milgram J, Kelmer G. Surgical treatment for acute small intestinal obstruction caused by Parascaris equorum infection in 15 horses (2002–2011). Equine Vet J Suppl. 2012;43:111–4.
Alanazi AD, Mukbel RM, Alyousif MS, AlShehri ZS, Alanazi IO, Al-Mohammed HI. A field study on the anthelmintic resistance of Parascaris spp. in Arab foals in the Riyadh region Saudi Arabia. Vet Q. 2017;37:200–5.
Cirak VY, Kar S, Girişgin O. A survey on anthelmintic resistance in Strongyles to ivermectin and pyrantel and macrocyclic lactone-resistance in Parascaris equorum. Turkiye Paraziol Derg. 2010;34:35–9.
Schougaard H, Nielsen MK. Apparent ivermectin resistance of Parascaris equorum in Danish foals. Vet Rec. 2007;160:439–40.
Lassen B, Peltola SM. Anthelmintic resistance of intestinal nematodes to ivermectin and pyrantel in Estonian horses. J Helminthol. 2014;89:760–3.
Näreaho A, Vainio K, Oksanen A. Impaired efficacy of ivermectin against Parascaris equorum, and both ivermectin and pyrantel against strongyle infections in trotter foals in Finland. Vet Parasitol. 2011;182:372–7.
Laugier C, Sevin C, Ménard S, Maillard K. Prevalence of Parascaris equorum infection in foals on French stud farms and first report of ivermectin-resistant P. equorum populations in France. Vet Parasitol. 2012;188:185–9.
Geurden T, Betsch JM, Maillard K, Vanimisetti B, D'Espois M, et al. Determination of anthelmintic efficacy against equine cyathostomins and Parascaris equorum in France. Equine Vet Ed. 2013;25:304–7.
von Samson-Himmelstjerna G, Fritzen B, Demeler J, Schurmann S, Rohn K, Schnieder T, et al. Cases of reduced cyathostomin egg-reappearance period and failure of Parascaris equorum egg count reduction following ivermectin treatment as well as survey on pyrantel efficacy on German horse farms. Vet Parasitol. 2007;144:74–80.
Martin F, Halvarsson P, Delhomme N, Höglund J, Tydén E. Exploring the β-tubulin gene family in a benzimidazole-resistant Parascaris univalens population. Int J Parasitol Drugs Drug Resist. 2021;17:84–91.
Veronesi F, Moretta I, Moretti A, Fioretti DP, Genchi C. Field effectiveness of pyrantel and failure of Parascaris equorum egg count reduction following ivermectin treatment in Italian horse farms. Vet Parasitol. 2009;161:138–41.
Veronesi F, Fioretti DP, Genchi C. Are macrocyclic lactones useful drugs for the treatment of Parascaris equorum infections in foals? Vet Parasitol. 2010;172:164–7.
Lindgren K, Ljungvall Ö, Nilsson O, Ljungström BL, Lindahl C, et al. Parascaris equorum in foals and in their environment on a Swedish stud farm, with notes on treatment failure of ivermectin. Vet Parasitol. 2008;151:337–43.
Lind EO, Christensson D. Anthelmintic efficacy on Parascaris equorum in foals on Swedish studs. Acta Vet Scand. 2009;51:45.
Boersema JH, Eysker M, Nas JWM. Apparent resistance of Parascaris equorum to macrocylic lactones. Vet Rec. 2002;150:279–81.
Stoneham S, Coles G. Ivermectin resistance in Parascaris equorum. Vet Rec. 2006;158:572.
Relf VE, Lester HE, Morgan ER, Hodgkinson JE, Matthews JB. Anthelmintic efficacy on UK thoroughbred stud farms. Int J Parasitol. 2014;44:507–14.
Hearn FPD, Peregrine AS. Identification of foals infected with Parascaris equorum apparently resistant to ivermectin. J Am Vet Med Assoc. 2003;223:482–5.
Slocombe JOD, de Gannes RVG, Lake MC. Macrocyclic lactone resistant Parascaris equorum on stud farms in Canada and effectiveness of fenbendazole and pyrantel pamoate. Vet Parasitol. 2007;145:371–6.
Craig TM, Diamond PL, Ferwerda NS, Thompson JA. Evidence of ivermectin resistance by Parascaris equorum on a Texas horse farm. J Equine Vet Sci. 2007;27:67–71.
Lyons ET, Tolliver SC, Ionita M, Collins SS. Evaluation of parasiticidal activity of fenbendazole, ivermectin, oxibendazole, and pyrantel pamoate in horse foals with emphasis on ascarids (Parascaris equorum) in field studies on five farms in Central Kentucky in 2007. Parasitol Res. 2008;103:287–91.
Armstrong SK, Woodgate RG, Gough S, Heller J, Sangster NC, et al. The efficacy of ivermectin, pyrantel and fenbendazole against Parascaris equorum infection in foals on farms in Australia. Vet Parasitol. 2014;205:575–80.
Beasley A, Coleman G, Kotze AC. Suspected ivermectin resistance in a south-east Queensland Parascaris equorum population. Aust Vet J. 2015;93:305–7.
Wilkes EJA, McConaghy FF, Thompson RL, Dawson K, Sangster NC, Hughes KJ. Efficacy of a morantel-abamectin combination for the treatment of resistant ascarids in foals. Aust Vet J. 2017;95:85–8.
Bishop RM, Scott I, Gee EK, Rogers CW, Pomroy WE, Mayhew IG. Sub-optimal efficacy of ivermectin against Parascaris equorum in foals on three Thoroughbred stud farms in the Manawatu region of New Zealand. N Z Vet J. 2014;62:91–5.
Cooper LG, Caffe G, Cerutti J, Nielsen MK, Anziani OS. Reduced efficacy of ivermectin and moxidectin against Parascaris spp. in foals from Argentina. Vet Parasitol Reg Stud Rep. 2020;20:100388.
Molento MB, Antunes J, Bentes RN, Coles GC. Anthelmintic resistant nematodes in Brazilian horses. Vet Rec. 2008;162:384–5.
Hautala K, Näreaho A, Kauppinen O, Nielsen MK, Sukura A, Rajala-Schultz PJ. Risk factors for equine intestinal parasite infections and reduced efficacy of pyrantel embonate against Parascaris sp. Vet Parasitol. 2019;273:52–9.
Martin F, Höglund J, Bergström TF, Lindsjö OK, Tydén E. Resistance to pyrantel embonate and efficacy of fenbendazole in Parascaris univalens on Swedish stud farms. Vet Parasitol. 2018;264:69–73.
Lyons ET, Tolliver SC, Kuzmina TA, Collins SS. Further evaluation in field tests of the activity of three anthelmintics (fenbendazole, oxibendazole, and pyrantel pamoate) against the ascarid Parascaris equorum in horse foals on eight farms in Central Kentucky (2009–2010). Parasitol Res. 2011;109:1193–7.
Martin F, Eyda M, Höglund J, Tydén E. Constitutive and differential expression of transport protein genes in Parascaris univalens larvae and adult tissues after in vitro exposure to anthelmintic drugs. Vet Parasitol. 2021;298:109535.
Sutherland IA, Leathwick DM. Anthelmintic resistance in nematode parasites of cattle: a global issue? Trends Parasitol. 2011;27:176–81.
Kaplan RM, Vidyashankar AN. An inconvenient truth: Global worming and anthelmintic resistance. Vet Parasitol. 2012;186:70–8.
Jimenez Castro PD, Venkatesan A, Redman E, Chen R, Malatesta A, Huff H, et al. Multiple drug resistance in hookworms infecting greyhound dogs in the USA. Int J Parasitol Drugs Drug Resist. 2021;17:107–17.
von Samson-Himmelstjerna G, Thompson RCA, Krücken J, Grant W, Bowman DD, Schnyder M, et al. Spread of anthelmintic resistance in intestinal helminths of dogs and cats is currently less pronounced than in ruminants and horses - Yet it is of major concern. Int J Parasitol Drugs Drug Resist. 2021;17:36–45.
Geerts S, Coles GC, Gryseels B. Anthelmintic resistance in human helminths: Learning from the problems with worm control in livestock. Parasitol Today. 1997;13:149–51.
Beech RN, Skuce P, Bartley DJ, Martin RJ, Prichard RK, Gilleard JS. Anthelmintic resistance: markers for resistance, or susceptibility? Parasitology. 2010;138:160–74.
Vercruysse J, Albonico M, Behnke JM, Kotze AC, Prichard RK, McCarthy JS, et al. Is anthelmintic resistance a concern for the control of human soil-transmitted helminths? Int J Parasitol Drugs Drug Resist. 2011;1:14–27.
Tinkler SH. Preventive chemotherapy and anthelmintic resistance of soil-transmitted helminths—Can we learn nothing from veterinary medicine? One Health. 2020;9:100106.
Ni J, Shen TCD, Chen EZ, Bittinger K, Bailey A, Roggiani M, et al. A role for bacterial urease in gut dysbiosis and Crohn's disease. Sci Transl Med. 2017;9:6888.
Helmink BA, Wadud Khan MA, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25:377–88.
Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol Psychiatry. 2016;21:786–96.
Kennedy R, Lappin DF, Dixon PM, Buijs MJ, Zaura E, Crielaard W, et al. The microbiome associated with equine periodontitis and oral health. Vet Res. 2016;47:49.
Lima SF, Teixeira AGV, Higgins CH, Lima FS, Bicalho RC. The upper respiratory tract microbiome and its potential role in bovine respiratory disease and otitis media. Sci Rep. 2016;6:29050.
Clemmons BA, Voy BH, Myer PR. Altering the Gut Microbiome of Cattle: considerations of host-microbiome interactions for persistent microbiome manipulation. Microb Ecol. 2019;77:523–36.
Song SJ, Woodhams DC, Martino C, Allaband C, Mu A, Javorschi-Miller-Montgomery S, et al. Engineering the microbiome for animal health and conservation. Exp Biol Med. 2019;244:494–504.
Peixoto RS, Harkins DM, Nelson KE. Advances in microbiome research for animal health. Annu Rev Anim Biosci. 2021;9:289–311.
Rosado PM, Leite DCA, Duarte GAS, Chaloub RM, Jospin G, Nunes da Rocha U, et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 2019;13:921–36.
Santoro EP, Borges RM, Espinoza JL, Freire M, Messias CSMA, Villela HDM, et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci Adv. 2021;7:3088.
Correa-García S, Pande P, Séguin A, St-Arnaud M, Yergeau E. Rhizoremediation of petroleum hydrocarbons: a model system for plant microbiome manipulation. Microb Biotechnol. 2018;11:819–32.
Deng X, Zhang N, Shen Z, Zhu C, Liu H, Xu Z, et al. Soil microbiome manipulation triggers direct and possible indirect suppression against Ralstonia solanacearum and Fusarium oxysporum. NPJ Biofilms Microbiomes. 2021;7:33.
Hoerauf A, Volkmann L, Nissen-Paehle K, Schmetz C, Autenrieth I, Büttner DW, et al. Targeting of Wolbachia endobacteria in Litomosoides sigmodontis: comparison of tetracyclines with chloramphenicol, macrolides and ciprofloxacin. Top Med Int Health. 2000;5:275–9.
Casiraghi M, McCall JW, Simoncini K, Kramer LH, Sacchi L, Genchi C, et al. Tetracycline treatment and sex-ratio distortion: a role for Wolbachia in the moulting of filarial nematodes? Int J Parasitol. 2002;32:1457–68.
Arumugam S, Pfarr KM, Hoerauf A. Infection of the intermediate mite host with Wolbachia-depleted Litomosoides sigmodontis microfilariae: impaired L1 to L3 development and subsequent sex-ratio distortion in adult worms. Int J Parasitol. 2008;38:981–7.
Mand S, Pfarr K, Sahoo PK, Satapathy AK, Specht S, Klarmann U, et al. Macrofilaricidal activity and amelioration of lymphatic pathology in bancroftian filariasis after 3 weeks of doxycycline followed by single-dose diethcarbamazine. Am J Trop Med Hyg. 2009;81:702–11.
Hoerauf A, Mand S, Volkmann L, Büttner M, Marfo-Debrekyei Y, Taylor M, et al. Doxycycline in the treatment of human onchocerciasis: kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms. Microbes Infect. 2003;5:261–73.
Foray V, Pérez-Jiménez MM, Fattouh N, Landmann F. Wolbachia control stem cell behavior and stimulate germline proliferation in filarial nematodes. Dev Cell. 2018;45:198–211.
Bazzocchi C, Mortarino M, Grandi G, Kramer LH, Genchi C, Bandi C, et al. Combined ivermectin and doxycycline treatment has microfilaricidal and adulticidal activity against Dirofilaria immitis in experimentally infected dogs. Int J Parasitol. 2008;38:1401–10.
Luck AN, Evans CC, Riggs MD, Foster JM, Moorhead AR, Slatko BE, et al. Concurrent transcriptional profiling of Dirofilaria immitis and its Wolbachia endosymbiont throughout the nematode life cycle reveals coordinated gene expression. BMC Genomics. 2014;15:1041.
Taylor MJ, von Geldern TW, Ford L, Hübner MP, Marsh K, Johnston KL, et al. Preclinical development of an oral anti-Wolbachia macrolide drug for the treatment of lymphatic filariasis and ochocerciasis. Sci Transl Med. 2019;11:2086.
Hong WD, Benayoud F, Nixon GL, Ford L, Johnston KL, Clare RH, et al. AWZ1066S, a highly specific anti-Wolbachia drug candidate for a short-course treatment of filariasis. Proc Natl Acad Sci USA. 2019;116:1414–9.
El-Ashram S, Suo X. Exploring the microbial community (microflora) associated with ovine Haemonchus contortus (macroflora) field strains. Sci Rep. 2017;7:70.
Sinnathamby G, Henderson G, Umair S, Janssen P, Bland R, Simpson H. The bacterial community associated with the sheep gastrointestinal nematode parasite Haemonchus contortus. PLoS ONE. 2018;13:e0192164.
Mafuna T, Soma P, Tsotetsi-Khambule AM, Hefer CA, Muchadeyi FC, Thekisoe OMM, et al. Bacterial profiling of Haemonchus contortus gut microbiome infecting Dohne Merino sheep in South Africa. Sci Rep. 2021;11:5905.
Bouchet C, Deng Q, Umair S. Bacteria associated with the parasitic nematode Haemonchus contortus and its control using antibiotics. Parasitologia. 2022;2:63–70.
García-Sánchez AM, Miller AZ, Caldeira AT, Cutillas C. Bacterial communities from Trichuris spp. A contribution to deciphering the role of parasitic nematodes as vector of pathogens. Acta Trop. 2022;226:106277.
White EC, Houlden A, Bancroft AJ, Hayes KS, Goldrick M, Grencis RK, et al. Manipulation of host and parasite microbiota: Survival strategies during chronic nematode infection. Sci Adv. 2018;4:7399.
Hahn M, Piecyk A, Jorge F, Cerrato R, Kalbe M, Dheilly NM. Host phenotype and microbiome vary with infection status, parasite genotype, and parasite microbiome composition. Mol Ecol. 2022;31:1577–94.
Jorge F, Dheilly NM, Poulin R. Persistence of a core microbiome through the ontogeny of a multi-host parasite. Front Microbiol. 2020;11:954.
Jorge F, Dheilly NM, Froissard C, Wainwright E, Poulin R. Consistency of bacterial communities in a parasitic worm: variation throughout the life cycle and across geographic space. Microb Ecol. 2022;83:724–38.
Xiang Y, Wu XQ, Zhou AD. Bacterial diversity and community structure in the pine wood nematode Buesaphelenchus xylophilus and B mucronatus with different virulence by high-throughput sequencing of the 16S rDNA. PLoS ONE. 2015;10:0137386.
Wu XQ, Xue Q, Xiang Y, Ding XL, Xu XL, Ye JR. Community and functional diversity of bacteria associated with propagative and dispersal forms of Bursaphelenchus xylophilus. Nematology. 2016;18:1185–98.
Tian XJ, Wu XQ, Xiang Y, Fang X, Ye JR. The effect of endobacteria on the development and virulence of the pine wood nematode Brusaphelenchus xylophilus. Nematology. 2015;17:581–9.
Cheng XY, Tian XL, Wang YS, Lin RM, Mao ZC, Chen N, et al. Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation. Sci Rep. 2013;3:1869.
Wang X, Yu Y, Ge J, Xie B, Zhu S, Cheng X. Effects of α-pinene on the pinewood nematode (Bursaphelenchus xylophilus) and its symbiotic bacteria. PLoS ONE. 2019;14:e0221099.
Vandekerckhove TTM, Willems A, Gillis M, Cooman A. Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group species (Nematoda, Longidoridae). Int J Syst Evol Microbiol. 2000;50:2197–205.
Haegeman A, Vanholme B, Jacob J, Vandekerckhove TTM, Claeys M, Borgonie G, et al. An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup. Int J Parasitol. 2009;39:1045–54.
Noel GR, Atibalentja N. 'Candidatus Paenicardinium endonii', an endosymbiont of the plant-parasitic nematode Heterdera gylcines (Nemata: Tylenchida), affiliated to the phylum Bacteroidetes. Int J Syst Evol Microbiol. 2006;56:1697–702.
Bird DM, Opperman CH, Davies KG. Interactions between bacteria and plant-parasitic nematodes: now and then. Int J Parasitol. 2003;33:1269–76.
Comments
Post a Comment