The pipeline for drugs for control and elimination of neglected ... - Parasites & Vectors

  • World Health Organization. Ending the neglect to attain the sustainable development goals: a road map for neglected tropical diseases 2021–2030. Geneva: World Health Organization; 2020.

    Google Scholar 

  • Pfarr KM, Krome AK, Al-Obaidi I, Batchelor H, Vaillant M, Hoerauf A, et al. The pipeline for drugs for control and elimination of neglected tropical diseases: 1. Anti-infective drugs for regulatory registration. Parasites Vectors. 2023;16:82. https://doi.org/10.1186/s13071-022-05581-4.

    Article  CAS  PubMed Central  Google Scholar 

  • Kuesel AC. Research for new drugs for elimination of onchocerciasis in Africa. Int J Parasitol Drugs Drug Resist. 2016;6:272–86. https://doi.org/10.1016/j.ijpddr.2016.04.002.

    Article  PubMed Central  Google Scholar 

  • World Health Organization. Guideline: alternative mass drug administration regimens to eliminate lymphatic filariasis. Geneva: World Health Organization; 2017.

    Google Scholar 

  • World Health Organization. Provisional strategy for interrupting lymphatic filariasis transmission in loiasis-endemic countries: report of the meeting on lymphatic filariasis, malaria and integreated vector management, Accra, Ghana, 5–9 March 2012. Geneva: World Health Organization; 2012.

    Google Scholar 

  • World Health Organization. Report from Informal consultation on albendazole research findings in lymphatic filariasis: 13–14 October 1998. Geneva: World Health Organization; 1998.

    Google Scholar 

  • Horton J, Witt C, Ottesen EA, Lazdins JK, Addiss DG, Awadzi K, et al. An analysis of the safety of the single dose, two drug regimens used in programmes to eliminate lymphatic filariasis. Parasitology. 2000;121:S147–60.

    Article  Google Scholar 

  • Brown KR, Ricci FM, Ottesen EA. Ivermectin: effectiveness in lymphatic filariasis. Parasitology. 2000;121:S133–46. https://doi.org/10.1017/S0031182000006570.

    Article  Google Scholar 

  • Agence nationale de sécurité du médicament et des produits de santé (ansm): Résumé des caractéristiques du produit (Mectizan). 2022. http://agence-prd.ansm.sante.fr/php/ecodex/frames.php?specid=65817014&typedoc=R&ref=R0388687.htm. Accessed 16 Feb 2023.

  • World Health Organization Prequalification Programme: Ivermectin WHO Public Assessment Report (NT007). 2021. https://extranet.who.int/pqweb/medicine/4359. Accessed 8 Nov 2022.

  • World Health Organization Prequalification Programme: Albendazole WHO Public Assessment Reports (NT005). 2021. https://extranet.who.int/pqweb/medicine/4338. Accessed 05 Nov 2022.

  • World Health Organization, WHO Expert Committee on Specifications for Pharmaceutical Preparations: Fifty-first report of the WHO Expert Committee on Specifications for Pharmaceutical Preparations. In: WHO technical report series 1003 2017.

  • World Health Organization: Forty-fifth report of the WHO Expert Committee on specifications for pharmaceutical preparations. 2011. https://apps.who.int/iris/handle/10665/44079.

  • World Health Organization: Forthy-eighth report of the WHO Expert Committee on specifications for pharmaceutical preparations. 2014. https://apps.who.int/iris/handle/10665/112733.

  • World Health Organization Prequalification Programme: Ivermectin WHO Public Assessment Report (NT009(a)). 2020. https://extranet.who.int/pqweb/medicine/4279. Accessed 8 Nov 2022.

  • Not applicable. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm.

  • Tambo E, Khater EI, Chen JH, Bergquist R, Zhou XN. Nobel prize for the artemisinin and ivermectin discoveries: a great boost towards elimination of the global infectious diseases of poverty. Infect Dis Poverty. 2015;4:58. https://doi.org/10.1186/s40249-015-0091-8.

    Article  PubMed Central  Google Scholar 

  • World Health Assembly: Traditional medicine. 2014.

  • World Health Organization Regional Office for the Western Pacific: Regional framework for harnessing traditional and complementary medicine for achieving health and well-being in the Western Pacific. Manila: WHO Regional Office for the Western Pacific; 2022.

  • Robertson F. HINARI: Opening access in biomedicine and health. Appl Transl Genom. 2014;3:84–5. https://doi.org/10.1016/j.atg.2014.07.003.

    Article  PubMed Central  Google Scholar 

  • Lazo-Porras M, Prutsky GJ, Barrionuevo P, Tapia JC, Ugarte-Gil C, Ponce OJ, et al. World Health Organization (WHO) antibiotic regimen against other regimens for the treatment of leprosy: a systematic review and meta-analysis. BMC Infect Dis. 2020;20:62. https://doi.org/10.1186/s12879-019-4665-0.

    Article  CAS  PubMed Central  Google Scholar 

  • Ehrens A, Hoerauf A, Hubner MP. Current perspective of new anti-Wolbachial and direct-acting macrofilaricidal drugs as treatment strategies for human filariasis. GMS Infect Dis. 2022. https://doi.org/10.3205/id000079.

    Article  PubMed Central  Google Scholar 

  • Beesetti H, Khanna N, Swaminathan S. Investigational drugs in early development for treating dengue infection. Expert Opin Investig Drugs. 2016;25:1059–69. https://doi.org/10.1080/13543784.2016.1201063.

    Article  CAS  Google Scholar 

  • Pinart M, Rueda JR, Romero GA, Pinzon-Florez CE, Osorio-Arango K, Silveira Maia-Elkhoury AN, et al. Interventions for American cutaneous and mucocutaneous leishmaniasis. Cochrane Database Syst Rev. 2020;8:CD004834. https://doi.org/10.1002/14651858.CD004834.pub3.

    Article  Google Scholar 

  • de Vries HJ, Reedijk SH, Schallig HD. Cutaneous leishmaniasis: recent developments in diagnosis and management. Am J Clin Dermatol. 2015;16:99–109. https://doi.org/10.1007/s40257-015-0114-z.

    Article  PubMed Central  Google Scholar 

  • de Vries HJC, Schallig HD. Cutaneous leishmaniasis: a 2022 updated narrative review into diagnosis and management developments. Am J Clin Dermatol. 2022;23:823–40. https://doi.org/10.1007/s40257-022-00726-8.

    Article  PubMed Central  Google Scholar 

  • Azim M, Khan SA, Ullah S, Ullah S, Anjum SI. Therapeutic advances in the topical treatment of cutaneous leishmaniasis: a review. PLoS Negl Trop Dis. 2021;15:e0009099. https://doi.org/10.1371/journal.pntd.0009099.

    Article  CAS  PubMed Central  Google Scholar 

  • Qian MB, Patel C, Palmeirim MS, Wang X, Schindler C, Utzinger J, et al. Efficacy of drugs against Clonorchiasis and Opisthorchiasis: a systematic review and network meta-analysis. Lancet Microbe. 2022;3:e616–24. https://doi.org/10.1016/S2666-5247(22)00026-X.

    Article  CAS  Google Scholar 

  • Batsa DL, Klarmann-Schulz U, Osei-Mensah J, Dubben B, Fischer K, Mubarik Y, et al. Comparison of repeated doses of ivermectin versus ivermectin plus albendazole for the treatment of onchocerciasis: a randomized, open-label, clinical trial. Clin Infect Dis. 2020;71:933–43.

    Article  Google Scholar 

  • Hong AR, Opoku NO, Weil GJ, Kanza EM, Gyasi ME. New research aims to optimize therapy against onchocerciasis. Mo Med. 2022;119:55–9.

    PubMed Central  Google Scholar 

  • Opoku NO, Gyasi ME, Doe F, Lew D, Hong AR, Chithenga S, et al. A re-evaluation of the tolerability and effects of single-dose ivermectin treatment on Onchocerca volvulus microfilariae in the skin and eyes in eastern Ghana. Am J Trop Med Hyg. 2021;106:740–5. https://doi.org/10.4269/ajtmh.21-0859.

    Article  CAS  PubMed Central  Google Scholar 

  • Francis H, Awadzi K, Ottesen EA. The Mazzotti reaction following treatment of onchocerciasis with diethylcarbamazine: clinical severity as a function of infection intensity. Am J Trop Med Hyg. 1985;34:529–36.

    Article  CAS  Google Scholar 

  • Awadzi K, Gilles HM. Diethylcarbamazine in the treatment of patients with onchocerciasis. Br J Clin Pharmacol. 1992;34:281–8.

    Article  CAS  PubMed Central  Google Scholar 

  • Fischer PU, King CL, Jacobson JA, Weil GJ. Potential value of triple drug therapy with ivermectin, diethylcarbamazine, and albendazole (IDA) to accelerate elimination of lymphatic filariasis and onchocerciasis in Africa. PLoS Negl Trop Dis. 2017;11:e0005163. https://doi.org/10.1371/journal.pntd.0005163.

    Article  CAS  PubMed Central  Google Scholar 

  • Bosshardt SC, McCall JW, Coleman SU, Jones KL, Petit TA, Klei TR. Prophylactic activity of tetracycline against Brugia pahangi infection in jirds (Meriones unguiculatus). J Parasitol. 1993;79:775–7.

    Article  CAS  Google Scholar 

  • Hoerauf A, Mand S, Adjei O, Fleischer B, Buttner DW. Depletion of Wolbachia endobacteria in Onchocerca volvulus by doxycycline and microfilaridermia after ivermectin treatment. Lancet. 2001;357:1415–6.

    Article  CAS  Google Scholar 

  • Hoerauf A, Mand S, Volkmann L, Buttner M, Marfo-Debrekyei Y, Taylor M, et al. Doxycycline in the treatment of human onchocerciasis: Kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms. Microbes Infect. 2003;5:261–73.

    Article  CAS  Google Scholar 

  • Hoerauf A, Marfo-Debrekyei Y, Buttner M, Debrah AY, Konadu P, Mand S, et al. Effects of 6-week azithromycin treatment on the Wolbachia endobacteria of Onchocerca volvulus. Parasitol Res. 2008;103:279–86.

    Article  Google Scholar 

  • Hoerauf A, Specht S, Buttner M, Pfarr K, Mand S, Fimmers R, et al. Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. Med Microbiol Immunol. 2008;197:295–311.

    Article  CAS  Google Scholar 

  • Specht S, Hoerauf A, Adjei O, Debrah A, Buttner DW. Newly acquired Onchocerca volvulus filariae after doxycycline treatment. Parasitol Res. 2009;106:23–31. https://doi.org/10.1007/s00436-009-1624-5.

    Article  PubMed Central  Google Scholar 

  • Hoerauf A, Volkmann L, Hamelmann C, Adjei O, Autenrieth IB, Fleischer B, et al. Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet. 2000;355:1242–3.

    Article  CAS  Google Scholar 

  • Cross R, Ling C, Day NP, McGready R, Paris DH. Revisiting doxycycline in pregnancy and early childhood–time to rebuild its reputation? Expert Opin Drug Saf. 2016;15:367–82. https://doi.org/10.1517/14740338.2016.1133584.

    Article  CAS  PubMed Central  Google Scholar 

  • Klarmann-Schulz U, Specht S, Debrah AY, Batsa L, Ayisi-Boateng NK, Osei-Mensah J, et al. Comparison of doxycycline, minocycline, doxycycline plus albendazole and albendazole alone in their efficacy against onchocerciasis in a randomized, open-label, pilot trial. PLoS Negl Trop Dis. 2017;11:e0005156. https://doi.org/10.1371/journal.pntd.0005156.

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma R, Jayoussi GA, Tyrer HE, Gamble J, Hayward L, Guimaraes AF, et al. Minocycline as a re-purposed anti-Wolbachia macrofilaricide: superiority compared with doxycycline regimens in a murine infection model of human lymphatic filariasis. Sci Rep. 2016;6:23458. https://doi.org/10.1038/srep23458.

    Article  CAS  PubMed Central  Google Scholar 

  • Specht S, Pfarr KM, Arriens S, Hubner MP, Klarmann-Schulz U, Koschel M, et al. Combinations of registered drugs reduce treatment times required to deplete Wolbachia in the Litomosoides sigmodontis mouse model. PLoS Negl Trop Dis. 2018;12:e0006116. https://doi.org/10.1371/journal.pntd.0006116.

    Article  CAS  PubMed Central  Google Scholar 

  • Aristoff PA, Garcia GA, Kirchhoff PD, Showalter HD. Rifamycins–obstacles and opportunities. Tuberculosis (Edinb). 2010;90:94–118.

    Article  CAS  Google Scholar 

  • Specht S, Pfarr KM, Arriens S, Hübner MP, Klarmann-Schulz U, Koschel M, et al. Combinations of registered drugs reduce treatment times required to deplete Wolbachia in the Litomosoides sigmodontis mouse model. PLoS Negl Trop Dis. 2018;12:e0006116. https://doi.org/10.1371/journal.pntd.0006116.

    Article  CAS  PubMed Central  Google Scholar 

  • Specht S, Mand S, Marfo-Debrekyei Y, Debrah AY, Konadu P, Adjei O, et al. Efficacy of 2- and 4-week rifampicin treatment on the Wolbachia of Onchocerca volvulus. Parasitol Res. 2008;103:1303–9. https://doi.org/10.1007/s00436-008-1133-y.

    Article  Google Scholar 

  • Aljayyoussi G, Tyrer HE, Ford L, Sjoberg H, Pionnier N, Waterhouse D, et al. Short-course, high-dose rifampicin achieves Wolbachia depletion predictive of curative outcomes in preclinical models of lymphatic filariasis and onchocerciasis. Sci Rep. 2017;7:210. https://doi.org/10.1038/s41598-017-00322-5.

    Article  CAS  PubMed Central  Google Scholar 

  • Boeree MJ, Diacon AH, Dawson R, Narunsky K, Du BJ, Venter A, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191:1058–65. https://doi.org/10.1164/rccm.201407-1264OC.

    Article  CAS  Google Scholar 

  • Gardon J, Gardon-Wendel N, Demanga N, Kamgno J, Chippaux JP, Boussinesq M. Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection. Lancet. 1997;350:18–22. https://doi.org/10.1016/S0140-6736(96)11094-1.

    Article  CAS  Google Scholar 

  • Zoure HG, Wanji S, Noma M, Amazigo UV, Diggle PJ, Tekle AH, et al. The geographic distribution of Loa loa in Africa: results of large-scale implementation of the Rapid Assessment Procedure for Loiasis (RAPLOA). PLoS Negl Trop Dis. 2011;5:e1210.

    Article  PubMed Central  Google Scholar 

  • Boussinesq M, Fobi G, Kuesel AC. Alternative treatment strategies to accelerate the elimination of onchocerciasis. Int Health. 2018;10:i40–8. https://doi.org/10.1093/inthealth/ihx054.

    Article  PubMed Central  Google Scholar 

  • World Health Organization, African Programme for Onchocerciasis Control (APOC): report of the consultative meetings on strategic options and alternative treatment strategies for accelerating onchocerciasis elimination in Africa. Ouagadougou 2015.

  • Büttner D, Wanji S, Bazzocchi C, Bain O, Fischer P. Obligatory symbiotic Wolbachia endobacteria are absent from Loa loa. Filaria J. 2003;2:10.

    Article  PubMed Central  Google Scholar 

  • Food and Drug Administration of the United States of America (US FDA): Drug Approval Package Gleevec (Imatinib Mesulate) Capsules. 2001.

  • O'Connell EM, Bennuru S, Steel C, Dolan MA, Nutman TB. Targeting filarial Abl-like kinases: orally available, food and drug administration-approved tyrosine kinase inhibitors are microfilaricidal and macrofilaricidal. J Infect Dis. 2015;212:684–93. https://doi.org/10.1093/infdis/jiv065[.

    Article  CAS  PubMed Central  Google Scholar 

  • Oconnell EM, Kamenyeva O, Lustigman S, Bell A, Nutman TB. Defining the target and the effect of imatinib on the filarial c-Abl homologue. PLoS Negl Trop Dis. 2017;11:e0005690. https://doi.org/10.1371/journal.pntd.0005690.

    Article  CAS  Google Scholar 

  • O'Connell EM, Nutman TB. Reduction of Loa loa microfilaremia with imatinib—a case report. N Engl J Med. 2017;377:2095–6. https://doi.org/10.1056/NEJMc1712990.

    Article  PubMed Central  Google Scholar 

  • Morawietz CM, Houhou H, Puckelwaldt O, Hehr L, Dreisbach D, Mokosch A, et al. Targeting kinases in Fasciola hepatica: anthelminthic effects and tissue distribution of selected kinase inhibitors. Front Vet Sci. 2020;7:611270. https://doi.org/10.3389/fvets.2020.611270.

    Article  PubMed Central  Google Scholar 

  • Pereira MB, Weber MHW, Haeberlein S, Mokosch AS, Spengler B, Grevelding CG, et al. Drug repurposing and de novo drug discovery of protein kinase inhibitors as new drugs against schistosomiasis. Molecules. 2022. https://doi.org/10.3390/molecules27041414.

    Article  PubMed Central  Google Scholar 

  • Martin RJ, Robertson AP. Mode of action of levamisole and pyrantel, anthelmintic resistance, E153 and Q57. Parasitology. 2007;134:1093–104. https://doi.org/10.1017/S0031182007000029.

    Article  CAS  Google Scholar 

  • Moser W, Schindler C, Keiser J. Efficacy of recommended drugs against soil transmitted helminths: systematic review and network meta-analysis. BMJ. 2017;358:4307. https://doi.org/10.1136/bmj.j4307.

    Article  Google Scholar 

  • Campillo JT, Eiden C, Boussinesq M, Pion SDS, Faillie JL, Chesnais CB. Adverse reactions with levamisole vary according to its indications and misuse: A systematic pharmacovigilance study. Br J Clin Pharmacol. 2022;88:1094–106. https://doi.org/10.1111/bcp.15037.

    Article  CAS  Google Scholar 

  • Campillo JT, Bikita P, Hemilembolo M, Louya F, Missamou F, Pion SDS, et al. Safety and efficacy of levamisole in loiasis: a randomized, placebo-controlled, double-blind clinical trial. Clin Infect Dis. 2021. https://doi.org/10.1093/cid/ciab906.

    Article  PubMed Central  Google Scholar 

  • Sales Junior PA, Molina I, Fonseca Murta SM, Sanchez-Montalva A, Salvador F, Correa-Oliveira R, et al. Experimental and clinical treatment of chagas disease: a review. Am J Trop Med Hyg. 2017;97:1289–303. https://doi.org/10.4269/ajtmh.16-0761.

    Article  CAS  PubMed Central  Google Scholar 

  • Martinez-Peinado N, Cortes-Serra N, Losada-Galvan I, Alonso-Vega C, Urbina JA, Rodriguez A, et al. Emerging agents for the treatment of Chagas disease: what is in the preclinical and clinical development pipeline? Expert Opin Investig Drugs. 2020;29:947–59. https://doi.org/10.1080/13543784.2020.1793955.

    Article  CAS  Google Scholar 

  • Maguire BJ, Dahal P, Rashan S, Ngu R, Boon A, Forsyth C, et al. The Chagas disease study landscape: A systematic review of clinical and observational antiparasitic treatment studies to assess the potential for establishing an individual participant-level data platform. PLoS Negl Trop Dis. 2021;15:e0009697. https://doi.org/10.1371/journal.pntd.0009697.

    Article  CAS  PubMed Central  Google Scholar 

  • Hasinoff BB, Patel D. Disulfiram is a slow-binding partial noncompetitive inhibitor of 20S proteasome activity. Arch Biochem Biophys. 2017;633:23–8. https://doi.org/10.1016/j.abb.2017.09.003.

    Article  CAS  Google Scholar 

  • Kannappan V, Ali M, Small B, Rajendran G, Elzhenni S, Taj H, et al. Recent advances in repurposing disulfiram and disulfiram derivatives as copper-dependent anticancer agents. Front Mol Biosci. 2021;8:741316. https://doi.org/10.3389/fmolb.2021.741316.

    Article  CAS  PubMed Central  Google Scholar 

  • Sheppard JG, Frazier KR, Saralkar P, Hossain MF, Geldenhuys WJ, Long TE. Disulfiram-based disulfides as narrow-spectrum antibacterial agents. Bioorg Med Chem Lett. 2018;28:1298–302. https://doi.org/10.1016/j.bmcl.2018.03.023.

    Article  CAS  PubMed Central  Google Scholar 

  • Frazier KR, Moore JA, Long TE. Antibacterial activity of disulfiram and its metabolites. J Appl Microbiol. 2019;126:79–86. https://doi.org/10.1111/jam.14094[.

    Article  CAS  Google Scholar 

  • Peniche AG, Renslo AR, Melby PC, Travi BL. Antileishmanial activity of disulfiram and thiuram disulfide analogs in an ex vivo model system is selectively enhanced by the addition of divalent metal ions. Antimicrob Agents Chemother. 2015;59:6463–70.

    Article  CAS  PubMed Central  Google Scholar 

  • Lane JE, Ribeiro-Rodrigues R, Suarez CC, Bogitsh BJ, Jones MM, Singh PK, et al. In vitro trypanocidal activity of tetraethylthiuram disulfide and sodium diethylamine-N-carbodithioate on Trypanosoma cruzi. Am J Trop Med Hyg. 1996;55:263–6. https://doi.org/10.4269/ajtmh.1996.55.263[.

    Article  CAS  Google Scholar 

  • Xiao SH. Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop. 2005;96:153–67. https://doi.org/10.1016/j.actatropica.2005.07.010.

    Article  CAS  Google Scholar 

  • Bergquist R, Elmorshedy H. Artemether and praziquantel: origin, mode of action, impact, and suggested application for effective control of human schistosomiasis. Trop Med Infect Dis. 2018. https://doi.org/10.3390/tropicalmed3040125.

    Article  PubMed Central  Google Scholar 

  • Shuhua X, Chollet J, Weiss NA, Bergquist RN, Tanner M. Preventive effect of artemether in experimental animals infected with Schistosoma mansoni. Parasitol Int. 2000;49:19–24. https://doi.org/10.1016/S1383-5769(00)00028-3.

    Article  CAS  Google Scholar 

  • Utzinger J, Tanner M, Keiser J. ACTs for schistosomiasis: do they act? Lancet Infect Dis. 2010;10:579–81. https://doi.org/10.1016/S1473-3099(10)70169-9.

    Article  Google Scholar 

  • Abay SM, Tilahun M, Fikrie N, Habtewold A. Plasmodium falciparum and Schistosoma mansoni coinfection and the side benefit of artemether-lumefantrine in malaria patients. J Infect Dev Count. 2013;7:468–74. https://doi.org/10.3855/jidc.2658.

    Article  Google Scholar 

  • Adedoja AA, Akanbi AA, Oshodi AJ. Effect of artemether-lumefantrine treatment of falciparum malaria on urogenitcal schistosomiasis in co-infected School Aged Children in North Central of Nigeria. Int J Biol Chem Sci. 2015. https://doi.org/10.4314/ijbcs.v9i1.13.

    Article  Google Scholar 

  • Liu R, Dong H-F, Guo Y, Zhao Q-P, Jiang M-S. Efficacy of praziquantel and artemisinin derivatives for the treatment and prevention of human schistosomiasis: a systematic review and meta-analysis. Parasites Vectors. 2011;4:201. https://doi.org/10.1186/1756-3305-4-201.

    Article  CAS  PubMed Central  Google Scholar 

  • Pérez del Villar L, Burguillo FJ, López-Abán J, Muro A. Systematic review and meta-analysis of artemisinin based therapies for the treatment and prevention of schistosomiasis. PLOS ONE. 2012;7:e45867; https://doi.org/10.1371/journal.pone.0045867.

  • Kramer CV, Zhang F, Sinclair D, Olliaro PL. Drugs for treating urinary schistosomiasis. Cochrane Database Syst Rev. 2014;8:CD000053.

    Google Scholar 

  • Saeed MEM, Krishna S, Greten HJ, Kremsner PG, Efferth T. Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol Res. 2016;110:216–26. https://doi.org/10.1016/j.phrs.2016.02.017.

    Article  CAS  Google Scholar 

  • Utzinger J, N'Goran EK, Caffrey CR, Keiser J. From innovation to application: social-ecological context, diagnostics, drugs and integrated control of schistosomiasis. Acta Trop. 2011;120:S121–37. https://doi.org/10.1016/j.actatropica.2010.08.020[.

    Article  Google Scholar 

  • Keiser J, Silue KD, Adiossan LK, N'Guessan NA, Monsan N, Utzinger J, et al. Praziquantel, mefloquine-praziquantel, and mefloquine-artesunate-praziquantel against Schistosoma haematobium: a randomized, exploratory, open-label trial. PLoS Negl Trop Dis. 2014;8:e2975. https://doi.org/10.1371/journal.pntd.0002975.

    Article  CAS  PubMed Central  Google Scholar 

  • Barda B, Coulibaly JT, Puchkov M, Huwyler J, Hattendorf J, Keiser J. Efficacy and safety of moxidectin, synriam, synriam-praziquantel versus praziquantel against Schistosoma haematobium and S. mansoni infections: a randomized, exploratory phase 2 trial. PLoS Negl Trop Dis. 2016;10:e0005008. https://doi.org/10.1371/journal.pntd.0005008.

    Article  CAS  PubMed Central  Google Scholar 

  • Montresor A. Cure rate is not a valid indicator for assessing drug efficacy and impact of preventive chemotherapy interventions against schistosomiasis and soil-transmitted helminthiasis. Trans R Soc Trop Med Hyg. 2011;105:361–3. https://doi.org/10.1016/j.trstmh.2011.04.003.

    Article  Google Scholar 

  • World Health Organization. Guidelines for the treatment of malaria. 3rd ed. Geneva: World Health Organization; 2015.

    Google Scholar 

  • Mnkugwe RH, Minzi O, Kinung'hi S, Kamuhabwa A, Aklillu E. Efficacy and safety of praziquantel and dihydroartemisinin piperaquine combination for treatment and control of intestinal schistosomiasis: a randomized, non-inferiority clinical trial. PLOS Negl Trop Dis. 2020;14:e0008619. https://doi.org/10.1371/journal.pntd.0008619.

    Article  CAS  PubMed Central  Google Scholar 

  • Zoleko-Manego R, Okwu DG, Handrich C, Dimessa-Mbadinga LB, Akinosho MA, ...

  • Comments

    Popular posts from this blog